

BICEPS-IV

Emulator Manual

Version 7.1

BRENDES DATENTECHNIK GmbH Dresdener Str. 10 D-26160 Bad Zwischenahn

Tel.: +49 4403 / 81 68 38 eMail: Info@brendes.de
Internet: http://www.brendes.de

Contents

Contents

1 Introduction .. 1

2 Function of the BICEPS Emulator 5
2.1 Structure of the BICEPS emulator 5
2.2 An outline of the Emulation Process 7
2.3 Start of the BICEPS Emulator .. 9
2.3.1 Switching-on and start of the BICEPS emulator with
 processor adapter (POD)... 10
2.3.2 Switching-on and start of the BICEPS emulator with
 Universal adapter .. 12

3 The BICWIN User Interface.. 14
3.1 Survey of the operating facilities 14
3.2 General aspects of the BicWin user interface 16
3.3 Windows and context menues .. 17
3.4 Status line and mouse panel.. 18
3.5 Dialogs .. 18

4 Memory Access.. 19
4.1 Basic Informations ... 19
4.2 Saving and loading files.. 20
4.3 Access to Special Function Registers 21
4.4 Access to the Program Memory, the internal and
 external Data Memory ... 22
4.5 Modification of single memory cells and variables 23
4.6 Watched variables ... 24
4.7 Initializing and copying of memory blocks 24
4.8 Mapping ... 25
4.9 Disassembled representation of the program memory 26

Contents

5 Break Possibilities .. 27
5.1 Basic information ... 27
5.2 Break mode .. 28
5.3 Definition of break events .. 29
5.4 Onbreak Function ... 30

6 The Real Time Trace Memory .. 31
6.1 Overview ... 31
6.2 Time measurement .. 33
6.3 Search function .. 34
6.4 Sourcetext trace mode .. 34
6.5 Control of tracing during program execution 35

7 Program Execution .. 36
7.1 Overview ... 36
7.2 Execution of a program in real time, reset 36
7.3 Execution of single steps ... 38
7.4 Debugging with Assembler and Sourcetext window 39

8 Sourcetext Debugging .. 41
8.1 Introduction... 41
8.2 Invoking the compiler, loading a program 42
8.3 Program execution ... 43
8.4 Handling of several Modules ... 44

Contents

 Appendix ...

A BICWIN Short Keys .. A-1

B Interfaces ... B-1
B.1 Emulation Connector (POD)... B-1
B.1.1 External reset... B-1
B.1.2 External clock ... B-1
B.2 Connector “Break/Trace”.. B-2
B.3 Serial interface .. B-3
B.4 Parallel interface ... B-3
B.5 Power supply... B-3

C Description of the Adapters (PODs) for different
 Controllers of the 80C51 Family C-1
C.1 The Universal adaptor of the BICEPS emulator................ C-1
C.1.1 Pinouts... C-2
C.1.2 Jumper settings.. C-4
C.1.3 Connections via clips cables... C-7
C.1.4 ROM versions with piggy-back-CPUs C-9
C.2 BICEPS processor adapters (PODs) C-10
C.2.1 Adapter part A1... C-11
C.2.2 Adapter part A2... C-11
C.2.3 Adapter part B... C-11
C.3 POD B32-44 for CPUs in a 40/44 pin package C-13
C.4 POD B552 for Philips 8xC552 .. C-14
C.5 POD B592 for Philips 8xC592 .. C-15
C.6 POD B537 for Siemens/Infineon 80C537/80C517A C-16
C.7 POD B520 for Dallas 87C520/530 C-17
C.8 POD B89C51CC for Temic 89C51CC C-17

D Solving problems .. D-1

Introduction 1

1 Introduction

The in-circuit-emulator BICEPS is a professional tool, which considerably
ease the development of electronic circuits on the base of microcontrollers of
the 8051 family. The hardware components of the controller as well as the
programs executed by it can be emulated in real time, i.e. with the original
speed.

For in-circuit emulation the processor will be simply removed from the
existing circuit and replaced by an adapter, which is connected with the
emulator and which works like the removed processor. Additionally to the
normal functions of the processor there are however the following
possibilities with the support of a normal PC, to which the emulator is
connected via an serial or parallel interface:
! Presentation and altering of all internal registers and memories of the

CPU, but also of external memories and assemblies, located on the cir-
cuit under test and reachable by the CPU

! Alterations of the program memory contents
! Start of a program to be tested, execution of a program in real time and

stop of the program run at different free chooseable break conditions
! Tracing of states of buses and external signals in a real time trace

memory.

As additional possibility an Universal adapter is available for the BICEPS
emulators, which does not replaces the processor but the EPROM of the
circuit under test. All debugging possibilities, i.e. especially the control about
the processor and the access to all memory ranges, stay preserved and go
therefore far beyond the possibilities of a simple EPROM simulator.

The reader of this manual should be familiar with the architecture of
processors of the 8051 family as well as with the fundamental progression of
a hardware and software development for microcontrollers. Suitable data
books should be at hand, because an exact knowledge of the emulated
processor is an supposition for a successful development work.

Introduction 2

Introduction 3

The performance characteristics of the BICEPS emulator are in detail:

! Adaption to different processors of 8051 family by adaptor boards
 (PODs)
! No restrictions with respect to memory space, ports and interrupts
! Support of Hook-mode and Bondout versions
! Universal adapter for connection of the emulator via EPROM socket

with preversion of all debugging possibilities
! Emulation memory: 128k RAM
 ! can be configured as: 64k program and 64k Extdata RAM

128k program RAM (banked)
 ! expandable to 512k program memory
 ! emulator internal or external memory (mapping)
! 12 external inputs for break and trace
! Break with program stop at any state of data bus, address bus or signals
 at the external logic probes
! Break counter
! Conditional breaks for IF-THEN conditions
! Trigger of external devices
!" 32 bit real time counter for time measurements in the range 100 ns up
to ca. 12 h
! 32k x 72 bit real time trace memory with tracing of all states of buses,
 the external signals and the real time counter (time stamp)
! comfortable search and filter functions for the trace memory
! Performance analysis
! Internal and external CPU clock
! BicWin user interface for Windows95/98/NT
 ! easy operation by means of mouse or keyboard
" !" free relocatable and alterable windows"
 ! complete symbolic debugging
" ! Sourcetext debugging
" ! Line assembler, disassembler
 ! comfortable Help function
 ! Macros
 ! Watch function for memory contents and variables
! Supports file formats of several compilers
!" Connection to personal computer via serial or parallel interface

Introduction 4

EMC

Hint: The BICEPS-Emulator is a device for testing of
electronic circuits. It is designed for the cooperation with
such circuits and therefore no device to operate
standalone according to §5 point 5 EMVG (German
EMC Law). It is restricted to exclusive use by
development laboratories or other enterprises with know-
how in the field of EMC.

We explicitly indicate that according to §5 point 6
EMVG at development of devices, testing and
installation precautions have to be taken to avoid
interferences of third parties. Since under certain
circumstances dejam measures must be eliminated (e.g.
remove the cover) to execute the test, suitable measures
for the complete test arrangement have in case to be
provided.

Introduction 5

Attention !

The BICEPS hardware and the BicWin-software are pro-
tected by copyright. A copy of the software is only permitted
for backup purposes and for own use; a transfer to others is
explicitly prohibited. Software updates and support are given
only to customers of BRENDES DATENTECHNIK
GmbH.

H I N T !

You will find descriptions of current changes of software as
well as additional user hints to this manual in the
”READ.ME” files on the enclosed system diskette. Kindly
notice the contents of these files absolutly.

Function of the Emulator 6

2 Function of the BICEPS-Emulator

2.1 Structure of the BICEPS-Emulator

The BICEPS emulator consists of seven essential components:

!" The Control Processor takes over the control of the emulation process

as well as the communication with the host computer (PC) via a serial or
parallel interface.

!" For the Emulation Memory 128k bytes are available, which can be
configured as

 - 64k RAM program memory and 64k RAM external data memory or
 - 128k RAM program memory (banked)
 The emulation memory can be expanded to 512k RAM.
!" The External Adapter (POD)‚ contains the emulation CPU. Using

different PODs one can emulate various CPUs of the 8051 family. Bus
signals of the CPU are transmitted over a flat cable to the main device.
Real time program execution can be interrupted automatically at certain
events or manually by user inputs.

!" A 32-bit-Real Time Counter allows exact time measurements of the
program executing duration with a solution of 100 ns. A measurement
range of up to 12 h is achieved by a switchable time base."

!" The bus signals, the external signals, which can be fed-in from the
circuit under test by means of test clipses (Logic Probes) as well as the
state of the real time counter can be traced in the Real Time Trace
Memory # In this way the temporal progression of the program run or
the access to the external data memory and the execution time of
program parts can be represented (also during a running program).

Function of the Emulator 7

!" The Address Range Selection is used for marking either addresses or
address ranges. For each address of the address space it can be defined
whether a memory access of these address resp. this address range

 !" shall lead to a program break
 !" shall be traced in the real time trace memory
! Besides the possibility of defining address ranges for program breaks,

using the Break Logic one can also determine conditions for the data
 bus and for external logic probes. Up to two break events can be

defined, which are counted (break counter) and combined in real time.
The break events can:

 !" interrutp the real time program execution (break)
 !" start or stop the real time trace
 !" trigger an external device.

"
"

Function of the Emulator 8

2.2 An Outline of the Emulation Process

After the initialization phase (the RESET command) the emulation processor
transfers the contents of its internal registers to the control processor and is
stopped by the latter. Now one can access the contents of the recovered
register as well as those of the emulation memory from the host computer by
help of the control processor. Moreover, one can retrieve and alter memory
contents, which are accessible only from the emulation CPU (externally
mapped memory ranges). Should the emulation processor now execute a
user's program, the (eventually changed) register contents are read and a jump
into this program follows. After termination of the program's execution the
new register contents are again transferred to the control processor.

The simplest form of program processing is execution in single steps. In this
case the internal state of the emulation processor is presented after each
program step. However, the normal procedure is the execution of a program
in real time. Then the emulation processor is started at a certain position of
the user's program. The program execution can be stopped either manually by
the user or automatically by previously defined break conditions and the state
of the emulation CPU is displayed. The break options are presented in detail
in chapt. 5.

If the Universal adaptor of the BICEPS emulator is used, the emulator must
be able to control the processor of the circuit under test. How is this possible
without replacing the processor of the circuit as with usual emulators? If the
processor executes all program memory accesses via the EPROM socket to
the emulation memory of the emulator, then this device has the control,
whether a user program to be tested is executed or not. If it is possible to
switch at the right moment between user program and hidden, emulator
internal system routines, single step executions and breaks can be realized.

Function of the Emulator 9

The BICEPS emulator possesses a complex monitoring logic, which surveys
the program execution in real time and controls the switching to the system
routines. The emulator maintains in this way the control about the processor
also during program execution. A additional communiction logic permits the
transfer of the internal register contents to the PC. No accesses to the external
data memory are used for that purpose to avoid restrictions related to the
functionallity of the ports.

The use of the BICEPS Universal adapter technique combines the
advantages of EPROM simulators and in-circuit emulators in an ideal way.
Even the support of applications with watch-dog timers are possible with this
technique. The user has only to secure that the cernel of the circuit, i.e. the
access of the processor to the EPROM socket is correct.

Function of the Emulator 10

2.3 Start of the BICEPS Emulator

The BICEPS emulator is started by invoking the program BicWin. You will
find a detailed description of the BicWin operation in the online help of the
software. To adapt the BICEPS emulator optimal to ist working conditions
several setting possibilities are provided.

The configuration is done on the hardware side via jumpers and on the
software side via the “Options” dialog of the BicWin software. Before you
start the emulator for the first time, you have to perform the working steps
"Implementation" and "Configuration"; please read to this chapter 2.3.1 or
2.3.2.

When starting BicWin all necessary files are loaded. To that belongs
moreover the configuration files (containing desktop and default settings
information) and the controller derivates definition file BICREGS.TXT
(containing the names and addresses of the Special function registers).

Thereafter the hardware components like break-, trace- and map-logic are
initialized. The emulation memory stays unchanged, i.e. it contains a random
content. The emulation processor performs a hardware reset and transfers the
current contents of its register to the PC, which displays them on the screen.

Function of the Emulator 11

2.3.1 Switching On and Start of the BICEPS-Emulator with
Processor Adapter (POD)

For the start of the BICEPS emulator only a few points have to be noticed. It
is recommended to proceed in the here given sequence:

1.) Start the installation program on the disc. It installs the BicWin software

on your harddisc.

2.) Check, whether the main voltage and the input voltage of the enclosed

power supply are in accordance. If this is the case, connect the power
supply to the emulator.

3.) Connect emulator and PC by means of the enclosed serial or parallel

interface cable (but not both cables). If you use the parallel interface,
note that the PC must provide a bidirectional parallel interface in EPP
mode (see BIOS setup).

4.) Control, whether the jumper settings of the CPU adapter (POD) conform

with the desired mode, in case correct the setting (see appendix C)

5.) Connect emulator and adapter (POD) by means of both enclosed ribbon

cable.

6.) Let the emulator switched off and start the BicWin software. After a

short delay, you will be asked for configuring the emulator. Confirm this
questions with “Yes”. You will get the Bicwin “Options” dialog. You
must set the following options (in the register cards "Interface" and
"Processor"). Further options settings as directories, compiler etc. can be
done now, but also later after the start of the emulator.

7.) Set PC interface: Select the correct interface name. If you are working

with a parallel interface, check wether the interface name (e.g. LPT1)
and the hardware address (e.g. 03BC) are correct for your computer.

Function of the Emulator 12

8.) Set Processor and POD type: this option is very important because the
emulator initialization depends on this settings

9.) Switch on the main voltage of the BICEPS emulator. The existing main

voltage will be indicated by the Power LED on the front of the emulator.
Press the reset button on the rear of the BICEPS emulator.

10.) Click on the “Ok” button of the BicWin options dialog now. The

emulator is started and BicWin presents the default desktop with
Register-, Intdata- and Assembler window. The contents of the Special
function registers must contain the reset values (e.g. PC=0000, SP=07).
If there are error messages, see appendix D “Solving problems”.

11.) In case the emulator has reported no error, it can be connected now with

your test board. For this purpose terminate BicWin (Close button or
Alt+F4).

12.) Switch off the emulator and plug the adaptor in the socket on your test

board.

13.) Switch on the power supply of the emulator and after that the voltage

supply of the circuit under test. Start the program BicWin again. The
emulator has to answer as described under 6.). Now it can be worked
with the BicWin user interface.

14.) Much success for your work with the BICEPS emulator.

Function of the Emulator 13

2.3.2 Switching On and Start of the BICEPS-Emulator
Universal Adapter

For the start of the BICEPS emulator only a few points have to be noticed. It
is recommended to proceed in the here given sequence:

1.) Start the installation program on the disc. It installs the BicWin software

on your harddisc.

2.) Check, whether the main voltage and the input voltage of the enclosed

power supply are in accordance. If this is the case, connect the power
supply to the emulator.

3.) Connect emulator and PC by means of the enclosed serial or parallel

interface cable (but not both cables). If you use the parallel interface,
note that the PC must provide a bidirectional parallel interface in EPP
mode (see BIOS setup).

4.) Control, whether the jumper settings of the CPU adapter (POD) conform

with the desired mode, in case correct the setting (see appendix C)

5.) Please note, that the Universal adaptor can’t work without your test

board. Remove the EPROM of your board. If you intent to emulate a
ROM version, then replace the CPU of your board by a suitable piggy-
back-CPU. Connect the board and the BICEPS emulator by means of
the Universal adaptor. Connect the two additional clips cables ALE
(input) and RESET (ouput). Please note, that the reset signal must be
fed-in correctly (see also chapter C.1.3.4).

6.) Let the emulator switched off and start the BicWin software. After a

short delay, you will be asked for configuring the emulator. Confirm this
questions with “Yes”. You will get the Bicwin “Options” dialog. You
must set the following options (in the register cards "Interface" and
"Processor"). Further options settings as directories, compiler etc. can be
done now, but also later after the start of the emulator.

Function of the Emulator 14

7.) Set PC interface: Select the correct interface name. If you are working

with a parallel interface, check wether the interface name (e.g. LPT1)
and the hardware address (e.g. 03BC) are correct for your computer.

8.) Set Processor and POD type: this option is very important because the

emulator initialization depends on this settings

9.) Switch on the main voltage of the BICEPS emulator. The existing main

voltage will be indicated by the Power LED on the front of the emulator.
Press the reset button on the rear of the BICEPS emulator. Switch on
the power supply of your test board.

10.) Click on the “Ok” button of the BicWin options dialog now. The

emulator is started and BicWin presents the default desktop with
Register-, Intdata- and Assembler window. The contents of the Special
function registers must contain the reset values (e.g. PC=0000, SP=07).
If there are error messages, see appendix D “Solving problems”.

11.) In case the emulator has reported no error, it can be worked now with

the BicWin user interface.

12.) Much success for your work with the BICEPS emulator.

The BICWIN user interface 15

3 The BICWIN User Interface

3.1 Survey of the Operation Facilities

In order to facilitate a comfortable operation of the BICEPS emulator, the
user interface BicWin offers multiple functions. The representation is given
with in a clear window technique with pull-down menus and status line. All
windows can be opened and closed arbitraryly and changed in size and
position. The operation is carried out with mouse or keyboard.

General informations to the possibilities of the BicWin user interface are
presented in the following chapters; more detailed descriptions, especially of
dialogs and menus are offered by the Online help of the BicWin software.

Following a short survey is given .

1.) All the memory cells accessible from the emulation processor can be

represented and altered. For this the windows Extdata, Intdata and
Program and the "Modify" functions. "Watch" variables can be defined
and presented in special watch windows. With "Copy" memory ranges
can be moved and with "Initialize" set to a certain value. With the
"Map" function it is defined which memory ranges internally in the
emulator and which ones externally on the user board are addressed.
There is the possibility to copy the contents of a external EPROM
directly into the emulation memory (see chapter 4).

2.) The special function registers of the CPU are displayed in the Register
window. They can also be retrieved and changed directly by means of
the "Modify" function, respectively (chapter 4).

3.) Execution of a program is initiated by function keys or by the "Debug"
menue. In the single step mode there is a possibility of executing the
subroutines in real time ("jump over calls").

The BICWIN user interface 16

4.) The program memory contents can be represented in disassembled form.
The input of mnemonic instructions will be done with the BicWin line
assembler.

5.) There is the possibility to set or clear breakpoints in the Assembler or
Sourcetext window directly. More complex break conditions (e.g.
combination of break events or break counters) are defined via the
“Break” dialog.

6.) By means of the "Trace" functions one can either display the contents of
the real time trace memory of the BICEPS emulator or select various
options of tracing data in the trace memory (see chapter 6). Further
functions are e.g. searching of certain contents or calculating of time
differences.

7.) The memory contents of the emulator as well as the contents of the real
time trace memory can be saved on or loaded from a disc. Several
standard file formats are supported.

8.) Besides absolute addresses symbolic addresses can be used, which were
created by an assembler or a compiler. If the use of symbols can be
helpful, this is offered by BicWin with the “?” button.

9.) Sourcetext Debugging allows the test of a program on source text level.
The high level language program can be executed in single steps, i.e.
line by line. Breakpoints are set directly in the source text. (chapter 8).

10.) All debugging commands are recorded in the “Command” window and
can altered and repeated easily.

11.) User-own macros provide the summarization of BicWin commands
under a free chooseable name. These can be executed by entering the
macro name but also automatically at the start of emulator and in case of
a break.

12.) To handle several projects, the actual configuration of desktop, break
and trace settings etc. can be loaded and saved. A context sensitive Help
Function offers additional support at the work with the BicWin user
interface

The BICWIN user interface 17

3.2 General Informations to BICWIN

The BicWin user interface consists of a screen divided into four parts:
! in the middle the working plane with windows and dialogs
! above that the selection menu
! below the status line
! the mouse panel with the most important actual functions.
In addition to that every window posseses a local context menu.

All functions can be invoked either with the keyboard or with the mouse.

Opened windows can be moved arbitrarily on the working area resp. enlarged
or reduced. Only one window is always selected; this is recognizeable by the
highlighted bar.

For all functions and windows short keys (function keys and ALT-key-
combinations) are available. The most important are the ALT-keys, with
which menu items and windows are selected and the function keys for
releasing BicWin actions.

The context sensitive BicWin help system offers detailed descriptions of
every function or windows. In the help window you find key words that can
be selected by the mouse and lead you to more help information.

The BICWIN user interface 18

3.3 Windows and context menues

A window is a part of the screen, which you can shift, enlarge and reduce,
cover with other windows , open and close. Several windows can be opened,
but always only one window can be active (recognizeable at the highlighted
bar at the head of the window).

Wih the ALT-key combinations a window can aimed to be opened or
activated (e.g. ALT+A = assembler window, ALT+1 = watch window 1).
With CTRL+F4 a window is closed, with F6 and Shift+F6 the next or the
previous window is activated (see also overview short keys).

An own context menu is assigned to every window, which can be activated
with the right mouse key or the context menu key. The context menu key is
also designated as PopUp key. For this reason the offered key combinations
are called "Pop+letter" so e.g. Pop+B. Incomparison with the CTRL key the
PopUp key has the advantage that it need not be activated synchronously
with the letter key and it can therefore better operated with one hand.

The following windows are available:

Label Function ALT key
Assembler Disassembled presentation of the program memory ALT+A
Intdata Hex presentation of the internal data memory ALT+I
Extdata Hex presentation of the external data memory ALT+E
Program Hex presentation of the program memory ALT+P
Register Special function registers of the CPU ALT+R
Sourcetext Presentation of source text or other text files ALT+S
Trace Trace memory content ALT+T
Watch1..4 Output of watched variables ALT+1 ... ALT+4
Command Records BicWin commands (with possibility to repeat) ALT+C

The BICWIN user interface 19

3.4 Mouse palette and Status line

In the mouse palette the most important functions, which are just available,
are offered. These can either be executed directly by mouse click or by input
of the highlighted short key. The mouse palette can be oriented horizontal or
vertical.

The mouse palette consists of a general part, which stays unchanged and a
locally assigned part, where the offered functions change, depending on the
just selected window. For instance the function F7 (single step) is always
available at the same position, while Pop+B (break point set/reset) is only
offered in the assembler window and in the source text window.

The status line at the lower margin of the BicWin window presents the
following information:
1. The runtime of the program executed in real-time or in single steps since

the last reset of the real-time counter.
2. The status of the external digital inputs (logic probes)
3. A message when the program to be tested is executed.
4. A message about the just executed macro

3.5 Dialog boxes

Menu options with dots (...) open a dialog box, in which settings can be
shown and altered. A dialog box must at first be closed, before another
window can be activated.

In a diealogue window there are different operating elements:
! Action switches: release an action by activating with mouse or keyboard
! Marking and switching fields: switching options on and off
! Input fields: for input of text
! List window: Selection of elements with the mouse or arrow keys

Accessing Memory 20

4 Accessing the Memory

4.1 Basic Information

The BICEPS emulator is equipped with various emulation memories
according to the achitecture of the emulated processor. The memory contents
can be displayed (output) and changed in order to create specific test
conditions. Besides this, we must naturally be able to enter or load the
programs to be tested, and possibly also modify them.

Processors of the 8051 family possess five different memory ranges
altogether:
! the Program Memory
! the external Data Memory
! the internal Data Memory
! the bit-addressable Memory
! the Special Function Registers;
the three latter are partially overlapping. A special BicWin window is
allocated to each memory range, where the bit-addresable memory is
displayed in the Intdata window.

In principle, we can distinguish the following access possibilities for various
memory types:
! Loading and saving of memory contetnts
! Displaying and changing the Special Function Registers
! Displaying and changing memory cells (Extdata, Intdata, Program

window)
! Modifying of memory cells, registers and variables"
! Initializing and copying of memory blocks
! Mapping, i.e. determining whether the RAM internal to the emulator

should be accessed or whether we should access the circuit to be tested
!" Disassembled presentation of the Program Memory (Assembler

window)

Accessing Memory 21

! Assembling 8051 Opcodes

Accessing Memory 22

4.2 Saving and loading files

The BicWin user interface offers various functions for loading and saving of
memory contents with different formats.

We can load:
! Contents of the program and data memories
! Source text files for highlevel language debugging
! Symbol information
and we can save:
! Contents of the program and data memories
! Trace memory contents

For loading and saving of memory contents four different file formats are
available.

BicWin can save memory contents of the emulator also as text files, e.g. to
evaluate these files with other programsor to edit them with a text editor.
Distinguished are
! hexadecimal representation of memory contents (Hexdump)
! disassembled representation of the program memory

It is to be noticed, that significant limits are stated for creating of text files,
since the files canotherwise reach a considerable size (several tenthousend
lines). At saving the program memory in disassembled form two formats are
distinguished:
! in the list format (same contents as in the Assembler window)
! in the sourcetext format the columns with addresses and file contents are

omitted, to make the text files usable as source for an assembler

Accessing Memory 23

4.3 Access to the Special Function Registers

The contents of the special function registers are displayed in the Register
window. The names of the registers are preset, and depend on the CPU type
selected in the “Options” dialog. In addition to the real special function
registers, the display includes the program counter PC, and the register bank
R0..R7.

The registers are separated in groups; each group has an own box with title
bar (e.g. Timer). The groups can be moved inside the register window; so
even if only a small register window is visible, the most interesting registers
can be displayed. The names, addresses and groups are contained in the
external file “BICREGS.TXT”, which can be edited if necessary.

The arrow keys or the mouse can be used to select a register and open the
“Modify” dialog to enter a new content. Ports are set at once, i.e. the new
content appears at the port pins immediately after entering the new value.

Attention:
 The internal data memory and the special function registers overlap in

the address range 80H..0FFH. In the Intdata window no special function
registers can be accessed, but only the internal RAM cells of the
processor (if there are any).

Accessing Memory 24

4.4 Access to the Program Memory, to the internal and
external Data Memories

Memory contents are represented in hexadecimal form in the Extdata, Intdata
and Program windows. By means of the arrow keys we can select specific
addresses and set at a new value, with the “Got to” function it can be jumped
to a new address.

Altogether three fields can be distinguished: the address field, the
hexadecimal field and the ASCII field. The cursor can be moved to any
position of the hexadecimal and the ASCII field. New memory contents in
hexadecimal form or as ASCII character can be entered.

For the individual functions one should keep in mind:

Program:
 Entering data is possible only for internal mapped memory ranges.
Extdata:
 Entering data i spossible always. If the test board should be directly

accessed, then the considered memory range must be mapped externally
(default setting).

Intdata:
 In the address range 80H..0FFH the internal Data Memory overlaps with

the Special Function Registers. The Special Function Registers cannot
be accessed in the Intdata window.

Accessing Memory 25

4.5 Output and Change of single Memory Cells and Registers
(Modify)

If a single memory cell or variable shall be aimed accessed without
hexadecimal representation of a memory block, the Modify function must be
used. This enables also other formats for input and the output, i.e. memory
cells can be entered or represented in binary or decimal form, as ASCII
characters or as highlevel language variable. Which variable type can be
selected depends on the compiler defined under "Options Highlevel".

The function Modify can be invoked directly from the Register, Assembler
and Sourcetext window. For that purpose the requested variable must be only
selected by a double click with the mouse. If it is a valid variable then one
gets the current value immediately and can enter a new value.

As a speciality the function "Modify write only" is still available, which
enables the writing to memory cells, without accessing by previous reading
the corresponding address. This is necessary e.g. with I/O components,
which can change their state already by the reading access.

Accessing Memory 26

4.6 Watched variables

With the Watch function memory contents and variables can be displayed in
up to four different watch windows. Which variable shall be represented is
determined by the “Watch list” dialog. Variable type (e.g. Unsigned) and
format (e.g. binary) can be selected.

Up to four windows are available, into which watch variables can be issued
(Watch windows 1..4). By the distinction of up to four windows it can be
exchanged in an easy way between sets of variables to be issued without
altering the definition in the list of watched variables. Only the windows with
the desired variables had to be opened or the not relevant windows closed
again. For this the key combinations ALT+1 until ALT+4 are provided.

The watch windows are actualized by choice either automatically after each
program execution or only at selection of the watch window.

4.7 Initializing and Copying of Memory blocks

The function "Initialize" writes a constant value into a memory block, defined
by start address and end address.

By means of "Memory Copy" we can move memory blocks, i.e. copy them.
The source and target areas may overlap. As extension hereto there is the
function "Copy EPROM", which transfers the program memory contents
from the user's circuit into the Emulation RAM (see chapter 4.8 "Mapping").

Accessing Memory 27

4.8 Mapping

The memory types program memory and Extdata memory can be mapped.
This means that the user can determine with help of the "Memory Map"-
function wether
! the RAM internal to the emulator (emulation memory), or else
! a memory possibly present on the circuit to be tested (e.g. an EPROM)
should be accessed.

The default setting for map is an internal mapped program memory and an
external mapped Extdata memory.

The BICEPS Universal adaptor offers as well a mapping possibility. This is
true only for the program memory, the Extdata memory is mapped external
always. To access the original EPROM, the EPROM of the test board must be
removed, replaced by the adaptor and be plugged on the adaptor. This means,
that an emulation is possible with the original CPU and the original EPROM.

Accessing Memory 28

4.9 Disassembled representation of the program memory

The Assembler window gives out the contents of the Program Memory in the
form of executable commands, i.e. in disassembled form. The code
undergoing this representation is always the code executed by the emulation
processor, i.e. - depending on the relevant map configuration - the contents of
either a memory internal to the emulator or an external one.

One can move through the memory forwards and backwards, using the cursor
keys. The line with the current program counter position, i.e. the command to
be executed next, is highlighted.

Besides the the representation of the program additional functions are
possible:
! Execution of the program
!" Set and clear of breakpoints and trace filter ranges
! Modifying of memory cells and variables
For more information see chapter 7.

The BicWin Line Assembler (integrated in the Assembler window) serves
the comfortable input of 8051 program code into the program memory RAM.
Before entering a mnemonic command, the command currently present in the
program memory is displayed in disassembled form. Entering code is only
possible in internal mapped memory ranges.

For denoting the addresses of the program memory, the bit memory and the
internal and external data memories one can use arbitrary symbols - provided
that they are known, i.e. entered into the corresponding symbol table. The
predefined symbols known to the BicWin Line Assembler are the names of
the special function registers (bit and byte addresses). They correspond to the
type of processor selected in the “Options” dialog. Furthermore complex
arithmetic expressions can be formed at the declaration of addresses and
constants, which can contain symbolic names as well as number constants.

Breaks 29

5 Break possibilities

5.1 Basic Information

Breaks are defined in order to stop the program execution of the emulation
CPU at certain conditions, interesting for the program test. For example,
these condition may be the execution of a certain part of the program, or an
access to some specific ranges of the Data Memory. The BICEPS emulator
offers the following possibilities for defining a break condition:
! Access to one or several addresses or address ranges (64k breakpoint

memory)
! State of the data bus by accesses to the data memory and program

memory
! State of the external inputs (Logic Probes)
! Event counter for breaks (Break Counter)
! conditional breaks
!" Overflow of the real time trace memory

The defined state of the address bus, the data bus and the logic probes forms
a break event, where the combination is predetermined

(addresses AND data AND Cycle type)
An event is additionally connected with an event counter (break counter).

Altogether there are two break events “Break1” and “Break2”, which can
generate a break alone or together. The following break actions are possible:
!" interruption of the real time program execution (break)
!" enabling the second break event for conditional breaks
!" start or stop of the real time trace
!" triggering external devices.

Breaks 30

5.2 Break mode

“Break1” and “Break2” can be combined in several ways. Beside OR and
AND combination there are conditional combinations, that allows to enable
one break event by the otherone. Furthermore there are the tow events
“Clear1” and “Clear2”, which can reset detetcted events “Break1” or
“Break2”. In this way it is possible for example to define an event, which is
only enabled in a special subroutine.

The events “Break1” and “Berak2” are available as signal outputs to trigger
external devices (see chapter “Interfaces”).

In the BicWin help function you can find several examples of the break and
controlling possibilities of the BICEPS emulator.

In addition to states of the address and data buses, we can also define a state
of the external inputs as a break event. When the signals at the external inputs
become effective and what qualities they must possess is described in chapter
B.2. The definition is made as binary combination, i.e. as a sequence
consisting of the symbols "0", "1" and "x", where to the external inputs 12
characters (corresponding to the 12 inputs) are assigned.. "x" stands for don't
care, these bits are not rated.

Breaks 31

5.3 Definition of Break Events

The most important function of the break logic of the BICEPS emulator is
interrupting the program execution at a specific position of the program. This
position is defined by its address.

For a break events “Break1”, “Break2”, “Clear1” and “Clear2” one can
define as many addresses or address ranges as one likes. By the definition of
the “Cycle type” it is possible to distinguish between Program and Extdata
memory accesses; in addition a specific data bus state can be defined. A
defined break address is only then valid when during the program execution
the defined state of the data bus occurs at the same time.

For accesses to the program memory the options “Opcodes” (default), “Line
numbers” and “All accesses” are available. "Opcodes" means, that a break is
only then recognized when the first byte of a command is executed
(independent of of the value of the read date). This is a very important option,
since CPUs of the 8051 family access addresses, partly unnecessarily, and
reject the read data afterwards. With “All accesses” this restriction is omitted;
with “Line numbers” the opcodes cycles are restricted to sourcetext line
beginnings.

The data bus conditions Read and Write contain the ranges 00-FF as
presetting, i.e no restriction to a specific state. Each reading or writing access
to an address of the external data memory leads to a valid break event, as far
as the address is marked as break address.

Each of the possible break events is assigned an event counter (break
counter). In order to effect a break, an event defined by the states of the
address bus, the data bus and the logical probes must occur as often as it is
predetermined in the break counter. Preset is a value of 1, i.e. the event is
immediately valid at its first occurrence. For “Break1” a 24 bit counter is
available, but this is reduced if break counter capacity is neede by other
events.

Breaks 32

5.4 The Onbreak Function

Normally, after a program execution has been aborted by a breakpoint, the
BicWin user interface awaits a new command from the user. However, since
the commands following a break are often very similar (e.g. output of the
contents of a specific memory cell, execution of several single steps etc.),
BicWin offers the possibility of automation of specific command sequences.

Any BicWin command or any macros can be defined as Onbreak command.
In this case, such an Onbreak command will be executed immediately
following a break or an execution of a single step. Only then new commands
can be entered again.

If the Onbreak command is a macro containing the "Run" command as its last
element, then the emulation processor is started up again. In this way we can
obtain an automatic cyclic processing of the user's program fragments and
BicWin commands. For example, each time when the emulation CPU
executes a specific subroutine, a certain memory range can be saved on a
diskette.

Real Time Trace 33

6 The Real Time Trace Memory

6.1 Overview

The BICEPS emulator can be provided with a Real-Time Trace Memory of a
32k x 72 bit capacity. It is used for recording certain signals during a real
time program execution, similar to a logic analyser. Additionally existent is a
32 bit real time counter, which runs synchronously with each program
execution and therefore enables exact time measurements.

The data recorded in the trace memory are:
! 16-bit address bus signals
! 8-bit data bus signals
! 12-bit external signals (logical probes)
! 32-bit position of the real time counter (time stamp)
! control signals
! break events “Break1” and “Break2”

On the basis of the traced information one can easily obtain an overview of
the run and the time duration of a program or the external signals.

The real time trace memory of the BICEPS emulator can store up to 32766
entries. Each entry has a size of 72 bit and is named a "frame". The frame
number is jointly represented in the trace window, where number 0
corresponds to the oldest entry and the largest frame number to the entry
traced at last.

Traced are all program steps, i.e. single steps as well as program fragments
executed in realtime.

The contents of the real time trace memory is displayed in the “Trace”
window. This is also possible during the program execution, without
influencing it ("on the fly" access).

Real Time Trace 34

The real time trace memory of the BICEPS emulator offers the following
functions:
! representation of the traced data either as program or as sequences of

cycles with time stamp and state of the external inputs
! show context in the Assembler or Sourcetext window while scrolling in

the trace window"

! calculating of time differences of the traced time stamp
! search functions for traced data
! Sourcetext trace mode (tracing of source text lines)
! selecting of address ranges and access modes for the tracing
! real time filter to enable/disable memory address ranges for tracing
! start and stop of tracing by break events
! Program break by overflow of the trace memory with a predetermined

number of frames to be traced
! Performance analysis, i.e. calculating the execution time for different

parts of the program

Real Time Trace 35

6.2 Time Measurements

The BICEPS emulator possesses a 32 bit real time counter, which counts
timing marks during a program execution.The time base is switchable
between
! 100 ns (measurement range up to ca. 7 min)
! 1 µs (measurement range up to ca. 70 min)
! 10 µs (measurement range up to ca. 12 h)

The current position of the real time counter is displayed in the status line. It
can be set directly to 0.0 with the function "Reset real time counter" or
together with a CPU reset with the function "Debug Reset all". The status
line displays the time of program execution since the last reset of the real
time counter.

Time measurements come in connection with the real time trace memory,
since the position of the counter is traced as time stamp. The time of program
execution yields to the difference of traced time stamps. Since their
calculation from absolute values is too troublesome, the trace window offers
several possibilities for forming of time differences:
1. The time stamp at the current cursor position in the trace window can be

set to 0. All following time stamp entries are represented then relative to
this zero mark.

2. The multiple manual setting to zero of the time stamp can be simplified
with the time filter function. In the time filter dialogue conditions can be
defined to which the continous time stamp representation starts again
with 0.0. Is e.g. the address of a subroutine entered as condition, then
the duration of execution of this subroutine is automatically represented
in the trace memory window. Besides addresses also conditions for the
data bus or the external inputs can be defined as time filter condition.

Real Time Trace 36

6.3 Search function

A complex search function allows to find those information in the large
amount of traced data, which are interesting for the debugging. Default
setting is no restriction, that means all traced frames met this condition. By
restricting the search conditions (e.g. address range 1000-1020 instead of
0000-FFFF) the search function becomes more sensible.

In addition to address and data bus contents it is possible to search changes in
break events “Break1” and “Break2”.

6.4 Sourcetext Trace Mode

In the sourcetext trace mode only the execution of lines of a loaded highlevel
language program is traced instead of the complete program run. Assumption
for this is, that a source text as well as the corresponding symbol information
were loaded (see chapter 8).

Each line of a highlevel language program is related to a memory range of the
program memory. Since in the sourcetext language trace mode only the start
of this address range is traced, the real time trace memory can trace up to
32766 sourcetext lines.

When scrolling in the Trace window, it is possible to display automatically
the part of the program in the Assembler and Sourcetext window, which
belongs to the actual selected trace address.

Real Time Trace 37

6.5 Controlling the real time trace

The tracing is controlled by trace filter conditions. Single addresses or
address ranges can be defined; also symbolic names, in particular module
names, are admissible there. Only accesses to the addresses defined in this
way are traced in the real time trace memory of the BICEPS emulator.

Three real time filters are available. Default setting is one filter for each cycle
type, i.e.
!" accesses to the program memory
!" writing accesses to the external data memory (WRITE)
! reading accesses to the external data memory (READ).
For the program memory filter “Opcodes”, “Line numbers” and “all accesses”
are distinguished.

It is possible to switch from one filter to another during program execution,
controlled by a break event.

The BICEPS emulator allows to start or stop the real time tracing at
predefined events. For this purpose break events are used. It can be defined,
which action should be released by break events. Possible are:
1. Start of tracing at program execution start
 Stop of tracing at program execution end
2. Start of tracing at program execution start
 Stop of tracing at an event
3. Start of tracing at an event
 Stop of tracing at program execution end
4. Start of tracing at an event
 Stop of tracing at another event
5. Start of tracing at program execution start
 Switch to another filter at an event
 Stop of tracing at program execution end

Program Execution 38

7 Program Execution

7.1 Overwiev

The BICEPS emulator offers various functions for executing a user's
program.

!" Execution of a program in real time (Run)
! Execution of a single step
! Execution of a single step, but with the condition that subroutines are

executed in real time (Jump over calls)
! Generation of a hardware reset of the emulation CPU (Reset processor)
! Execution of a program in real time until a break address is reached
! Set and clear of breakpoints

7.2 Execution of a program in real time, Reset

One of the essential functions of an in-circuit emulator is the execution of
programs under real time conditions until the program's run is stopped. In the
simplest case the break follows after executing a single step of the program
(Single Step). However, the real time relation can be obtained only by
executing several program steps.

By means of the "Run"-function we initialize the break logic and start the
program.

The execution of a program in real time is indicated by a light diode in the
field "Running" on the front panel of the emulator. The real time trace
memory can be accessed, while the program is executed, and its contents

Program Execution 39

displayed without disturbing the program execution. An interruption of the
program can be performed
!" by the user with the mouse or the keyboard or
!" by occurrence of a break condition.

After a break, the actual values of the open windows and the status line are
displayed. Very important for program debugging are the register window
with the actual PC and registers and the actual part of the program in the
Assembler window. After a break, an access to all memory ranges is possible
in order that the current memory contents could be changed.

The function "Reset processor" resets the emulated CPU by executing a
hardware reset.

Attention: The BICEPS emulator supports the feeding of an external reset

signal. If an external reset signal is constantly active, no program
execution is possible. Such a situation can be recognized by observing
that the "Status" diode is not lighted, though the processor has been
started up. (compare with section 19.2)

Program Execution 40

7.3 Execution of single Steps

The emulated CPU can execute a user's program either in real time or in
single steps. In the first case, the program is started up and executed until a
break occurs. In case of single steps, the internal state of the processor is
displayed after each program step.

The "Jump over Calls" function allows to execute single steps with executing
of subroutines in real time. This means: if the next command to be executed
is a CALL opcode, then a break point is set immediately after this opcode,
and the program is started up in real time; otherwise a normal single step is
executed. If the processor fails to return from the subprogram, then the
program execution must be stopped by the user.

Single steps are traced in the real time trace memory as programs executed in
real time are.

Program Execution 41

7.4 Debugging with the Assembler and Sourcetext window

The most important debugging functions can be executed and monitored
directly in the Assembler and Sourcetext window. This functions are:

! Reset of the processor
! Execution of a single step, i.e. an assembler opcode or a sourcetext line
! Single step with "Jump over Calls"
! Execution of the program in real time
! Program execution to the cursor, i.e. the command marked by the cursor

is provided with a breakpoint and the program is started
! Setting the program counter PC on the command marked by the cursor
! Setting and clearing of breakpoints
! Marking of program ranges and setting/clearing of trace filters for this

program ranges. By this feature it is possible to disable the tracing of
program loops whose execution leads to an overflow of the trace
memory"

! Opening the “Modify” dialog by a double click of the mouse with the
selected variable name.

! representation of another part of the program

The most of this functions can be executed directly by a click with the mouse
in the mouse palette or by a function key. The remaining functions can be
activated via the local context menue.

In combination with the Trace window it is possible to show the actual part
of the program in the Assembler or Sourcetext window when scrolling in the
Trace window. The address of the just selected trace frame is shown as
highlighted bar in the Assembler or Sourcetext window. The user can watch
the traced program flow in a representation with a moving bar just like the
execution of single steps.

By deactivating the option “Follow program counter” it is possible to freeze a
representation of the Assembler or Sourcetext window. The shown part of

Program Execution 42

the program isn’t adapted when the program counter is changed by execution
of the program.

The following lines are shown highlighted:
1. the actual program counter address
2. breakpoints
3. disabled trace filter ranges
4. the address of the just selected frame in the trace window
5. marked areas.

Sourcetext Debugging 43

8 Sourcetext Debugging

8.1 Introduction

The BicWin user interface supports a program test on the base of highlevel
language debugging. This means that the source text of programs, which is
written in a highlevel language (e.g. C51) or in assembler language, can be
loaded by BicWin and is presented during the debugging process.

The sourcetext is shown in the Sourcetext window. All debugging features
known from the Assembler window are available in the Sourcetext window,
too (e.g. execution of the program line by line). In the real time trace memory
sourcetext lines instead of assembler opcodes can be traced. Highlevel
language variables are represented and altered corresponding to their type
definition.

The switching between Assembler and Sourcetext window makes it possible
to execute a program in different “resolution”.

The assumption is, that the relation between the line numbers of the original
source text and the addresses of the executable code is known. The used
compiler or assembler software must generate the necessary symbolic and
line number informations.

Sourcetext Debugging 44

8.2 Invoking the Compiler, Loading a Program

The BicWin user interface uses different files for handling sourcetext during
debugging. They are:
! a file with the program code and the symbolic information
! one or more files containing the source text

For the cooperation with the BicWin software it is important to correctly
select the various options of the compiler, so that the program and symbol
files could be created in a form readable by the emulator. Very important are
the line number symbols because they are needed for the relation of program
code and source text line. To access highlevel language variables, symbolic
names and typedef informations are needed. Check in y<our compiler
manual, which options must be set to generate this informations (e.g. Keil-
C51: objectextend). The function “Load status” of the BicWin software
shows how many symbol names and line numbers were loaded.

After starting up the emulation software BicWin, a program to be tested is
loaded by means of the function "File Load”. This function loads the program
file as well as the symbol file and the source text, if source text informations
are contained in the symbol file. More sourcetext modules are loaded by the
function “File Open”. It should be noticed that the program file and the
source text are loaded from the directories determined under "Options
Directories".

Sourcetext Debugging 45

8.3 Program execution

The loaded source text is represented in the Sourcetext window. Every line of
the text can be selected by the mouse or the cursor keys. The line with the
actual program counter, i.e. that line of the source text, which is to be
executed next, is optically highlighted.

The Sourcetext window offers the same functions for executing a program
and for debugging as the Assembler window (see chapter 7.4). The
execution of a program in a high-level language does not differ in principle
from that of an assembler program. The essential differences are the
representation of the current program sector and the execution of single steps.

Breakpoints can be set only on the lines which have been translated into the
corresponding program code by the compiler, so they cannot be set e.g. on
empty lines, or on comment lines. If either the program counter of the CPU or
a breakpoint cannot be set on some line, since no corresponding line number
symbol for this line has been generated by the compiler, then an error
message is given.

It can always be switched between Assembler window and Sourcetext
window and therewith between the highlevel language representation and the
assembler one. We can also determine in this way whether in case of single
steps an assembler command is executed or whether the program will be
executed line by line (i.e a single step corresponds to a line of the source
program). Highlevel language single steps are only executed, when the
Assembler window is not selected and the program counter points to a line
number.

Sourcetext Debugging 46

8.4 Handling of several modules

If the program is composed of several source text files (modules), more than
one text files can be represented in the Sourcetext window. With the function
“File Open” every text file can be loaded.

If the option “Follow program counter” is activated (default setting), more
sourcetext files are reloaded automatically when the program counter points
to another module after a break or a single step.

More than one Sourcetext window can be opened. In this windows the option
“Follow PC” is switched off to enable one windows for the actual program
section and other windows for fixed program representations.

Switching between different modules is possible only, if sourcetext file
names and module names are contained in the symbol table.

Appendix

Appendix

BICWIN short keys A-1

A BICWIN short keys

A.1 Function keys

 ALT STRG UMSCHALT
F1 Help
F2 CPU Reset Reset all Clear trace Macro short key
F3 Search Again Macro short key
F4 Run to Cursor Terminate Close window Macro short key
F5 Go to Go to symbol Macro short key
F6 Next window Previous window
F7 Single step Macro short key
F8 Jump over Call Macro short key
F9 Run Macro short key
F10 Menue Context menue

A.2 ALT-keys

Taste Funktion Typ
Alt+A Assembler (window)
Alt+B Break (dialog)
Alt+C Command (window)
Alt+D Debug (menue)
Alt+E Trace (menue)
Alt+F File (menue)
Alt+H Help (menue)
Alt+I IntData (window)
Alt+K Break (menue)
Alt+M Macro (menue)
Alt+N Window (menue)
Alt+O Options (menue)
Alt+P Program (window)
Alt+R Register (Fenster)
Alt+S Sourcetext (window)
Alt+T Trace (window)
Alt+V Views (menue)
Alt+W Watch (menue)
Alt+X ExtData (window)
Alt+Y Memory (menue)
Alt+1 Watch 1 (window)
Alt+2 Watch 2 (window)
Alt+3 Watch 3 (window)
Alt+4 Watch 4 (window)

Interfaces B-1

B Interfaces

B.1 Emulation POD Connector

Most signals of the Emulation CPU are connected directly with the
Emulation Connector. The following lines are buffered:
! P0.0 ... P0.7 (Port 0)
! P2.0...P2.7 (Port 2)
! PSEN, ALE and P3.6 (only if it is used as WR signal).
These and the following information are true for processor adapters (PODs)
only. If an BICEPS Universal adaptor is used see appendix C.1.

B.1.1 External Reset

The BICEPS emulator supports the feeding of an external reset signal. This
means that during a real time program execution the processor can be reset
from outside. The break logic of the emulator stays nevertheless active.

If the reset signal is always active, no program execution is possible. This can
be recognized if the “Running” LED does not illuminate though the processor
was started. If in this case the program execution will be interrupted
manually, then the message "Emulation CPU can't be interrupted. Hardware
Reset performed" will appear.

B.1.2 External Crystal, External Vcc

At XTAL1 and XTAL2 an external crystal may be connected, however, also
a digital clock may be fed in. Via Vcc the adaptor can be supplied by the
user's circuit, but in the normal case the supply voltage is obtained by the
emulator over the flat cable .

Interfaces B-2

B.2 Connector “Break/Trace”

BICEPS emulators which are equipped with a real time trace memory offer
12 external digital inputs (logic probes) for tracing external signals or
generating breaks by an external signal (see chapter 5 and 6).

All input signals are synchronized with the CPU clock. That means that the
external inputs are latched by the falling edge of the signals /PSEN, /RD or
/WR. A break can generated only, when the input signals were latched. The
inputs are TTL and HCMOS compatible and are provided with a 4,7k PullUp
resistor.

In addition to the 12 signal inputs two ouput signals for triggering external
devices are available. These two signals correspond with the break events
“Break1” and “Break2”. Please note the following specialities:
! the signal “Break1” drives also the “Trigger” LED at the front panel of

the emulator
! the signal “Break2” is inverted to enable an activ low triggering of

devices.

 Break2 Input10 Input8 Input6 Input4 Input2 Input0

 GND Break1 Input11 Input9 Input7 Input5 Input3 Input1

Fig. B.1 Connector „Break/Trace“

Interfaces B-3

B.3 RS232C Interface (9 pins)

Only three lines of the RS232C interface of the host PC are connected with
the BICEPS emulator, namely RxD and TxD (data lines) and GND.

The communication format and baud rate are set automatically

B.4 Parallel Interface (25 pins)

The parallel interface of the BICEPS emulator works bidirectional for a
higher communication speed. The Personal Computer must provide a
bidirectional parallel interface (EPP mode), too. This is true for modern
computers (check BIOS setup); older computers an parallel interface card
must be used.

B.5 Power Supply

The BICEPS emulator is supplied over the power socket by the provided
power supply unit. It generates a stabilized 5V voltage. Please take care of
the correct mains voltage (in normal case 230V).

Description of the Adapters (PODs) C-1

C Specialities of the Adaptors for different CPUs of the
8051 family (PODs)

C.1 The Universal Adapter of the BICEPS emulator

A speciality of the BICEPS emulator is realized with the Universal adapter.
This is provided for two application areas:
1.) Connecting the bus signals of the controller without the necessity of

replacing the processor (e.g. with PCBs in SMD technique). The
Universal adapter has the same pin layout as a standard memory circuit.
So it can be plugged in a socket of an external program memory
(EPROM) for example.

2.) Emulation of ROM versions by means of a piggy-back CPU.

Besides the signals of the EPROM socket two further signals are of
importance:
! The emulator get control about the processor on the circuit via a reset

output. The RESET signal has to be fed into the circuit or connected to
the RESET pin of the processor.

! The ALE signal of the processor must be taken off.

These two necessary connections are realized by means of two additional
cables (with test clipses), which are connected to the Universal adapter.

Please notice:
! A system is assumed, where the data bus of the processor and the

EPROM socket are connected directly, so that by means of the ALE
signal the lower address bits can be produced out of the data bus signals.

! Since the Universal adapter is directly, i.e. without buffering, connected
to the local data bus of the circuit under test, errors with noise loaded
systems cannot be excluded. In such cases an adapter with emulation
processor must be used.

Description of the Adapters (PODs) C-2

On the upper side of the adapter a socket is provided, into which the EPROM
originally existing on the pcb under test is plugged-in, but is now replaced by
the Universal adapter. The Universal adapter can be use as adapter between
pcb and original EPROM. With the map function the program memory can be
switched over to this external EPROM; in this way the original processor and
the original EPROM is emulated.

C.1.1 Pin-Configuration

The address bus signals A0...A15 are taken via the EPROM adapter, the data
bus signals D0...D7 as well as the /PSEN signal via the /CS or the /OE pin of
the EPROM. For this a DIL plug with 28 pins is provided. PLCC versions
can be adapted by means of a corresponding PLCC converter DIL28-
PLCC32 or DIL32-PLCC32. The following pin configurationis based upon:

EPROM up to 64k, DIL28, PLCC32 (nc 1,12,17,26):

 Pin number Signal Pin number Signal
 DIL PLCC DIL PLCC

 1 2 A15 28 32
 2 3 A12 27 31 A14
 3 4 A7 26 30 A13
 4 5 A6 25 29 A8
 5 6 A5 24 28 A9
 6 7 A4 23 27 A11
 7 8 A3 22 25 /OE
 8 9 A2 21 24 A10
 9 10 A1 20 23 /CS
 10 11 A0 19 22 D7
 11 13 D0 18 21 D6
 12 14 D1 17 20 D5
 13 15 D2 16 19 D4
 14 16 GND 15 18 D3

Description of the Adapters (PODs) C-3

EPROM larger than 64k, DIL32, PLCC32:

 Pin number Signal Pin number Signal
 DIL PLCC DIL PLCC

 1 1 32 32
 2 2 31 31
 3 3 A15 30 30
 4 4 A12 29 29 A14
 5 5 A7 28 28 A13
 6 6 A6 27 27 A8
 7 7 A5 26 26 A9
 8 8 A4 25 25 A11
 9 9 A3 24 24 /OE
 10 10 A2 23 23 A10
 11 11 A1 22 22 /CS
 12 12 A0 21 21 D7
 13 13 D0 20 20 D6
 14 14 D1 19 19 D5
 15 15 D2 18 18 D4
 16 16 GND 17 17 D3

The Universal adapter is supplied with voltage by the emulator, i.e. both the
supply voltages are not connected via the Vcc pin of the EPROM socket.

Description of the Adapters (PODs) C-4

C.1.2 Jumper Settings

 JA
JB

JD1
JD2

JE1

JE3

K1
K2
K3
K4
K5
K6
K7

At the cable junction K the following signals can resp. must be connected:

K1: not used
K2: not used
K3: ALE (necessary)
K4: RESET-In (optional)
K5: WR (optional)
K6: RD (optional)
K7: RESET-Out (necessary)

Description of the Adapters (PODs) C-5

C.1.2.1 Emulation of ROM Versions (Jumper A)

Jumper A to the outside (to the PCB corner)
 Use of a piggy-back CPU for the emulation of ROM versions
Jumper A to the inner side
 Use of Romless CPU with external EPROM (Presetting)

C.1.2.2 Polarity of the external Reset Signal (Jumper B)

This jumper is only necessary if an external reset signal shall be fed-in via the
additional cable junction K4.

Jumper B set:
 external reset signal RESET in positive logic (e.g. standard 80C51) shall

be fed-in
Jumper B not set:
 no external reset signal or an external reset signal /RESET in negative

logic (e.g. 80C535) shall be fed-in (presetting)

C.1.2.3 Connecting the PSEN Signal (Jumper D1)

Jumper D1 to the inner side (to the cable):
 /PSEN signal is existing at pin 22 of the EPROM socket (/OE)

(presetting)
Jumper D1 to the outside (to the edge of the PCB):
 /PSEN signal is existing at pin 20 of the EPROM socket (/CS)

Description of the Adapters (PODs) C-6

C.1.2.4 Polarity of the Reset Output (Jumper D2)

Jumper D2 to the inner side (to the cable):
 negative logic of the reset-out signal /RESET, i.e. LOW-level leads to

reset of the CPU (e.g. for 80C535)
Jumper D2 to the outside (to the pcb edge):
 positive logic of the reset-out signal RESET, i.e. HIGH level leads to

reset of the CPU (e.g. Standard-80C51, presetting)

C.1.2.5 EPROM-Type (Jumper Field E)

The EPROM type can be defined by means of the jumper field E, i.e. whether
the upper address bits are led to the emulator or not. The address bits are
evaluated if the corresponding jumpers are plugged-in., otherwise they are
put on LOW level. In this way the Universal adapter can be adapted to
different EPROM types.

At older versions of the Universal adapter this jumper field is not available,
here the selection of the EPROM is made via the setup function of the
BICTOP software. At newer adapters this is not necessary, here ”not used” is
to set in the setup under Universal adapter.

The following jumpers are to place for the following EPROM types:
 JE1 JE2 JE3
 2764: open open open
 27128: open open placed
 27256: open placed placed
 27512: placed placed placed

In case that not all jumpers are placed, it is to notice, that from the view of
the emulator it can not be distinguished between accesses to the lower and
the upper address ranges (e.g. an access to the address 8100H is seen as an
access to the address 0100H).

Description of the Adapters (PODs) C-7

C.1.3 Connections via Clips Cable

The Universal adapter of the BICEPS emulator has six connections for
signals, which cannot contacted directly via the EPROM socket. Two signals
- ALE (input, K3) and RESET (output, K7) - have to be connected in any
case the remaining signals are optional.

C.1.3.1 ALE signal (K3)

Must be connected!

C.1.3.2 Input for external Reset (K4)

The BICEPS emulator supports the feeding of an external reset signal. This
means, that during a real time program execution the processor can be reset
from outside. The break logic of the emulator remains active in spite of this.

If the reset signal is always active, no program execution is possible. One can
recognize that the status LED is not illuminated though the processor was
started.. If the ”GO” command is broken manually in this case , the message
"Emulation CPU can't be interrupted. Hardware Reset performed" is given.

Description of the Adapters (PODs) C-8

C.1.3.3 Write and Read (K5, K6)

The connections K5 (/WR) and K6 (/RD) are provided for systems with
external data memory. If the signals are connected, accesses to the external
data memory can be defined as break condition and traced in the real time
trace memory.

C.1.3.4 Reset Output (K7)

The feeding of a reset signal into the circuit under test is mandatory necessary
to control the processor of the circuit. It is to notice here that the Reset signal
output is not disturbed by the user board. Admissible is e.g. a voltage
monitoring and reset device with an open collector output. Problems can
occur with an electrolytic capacitor parallel to the reset signal, it must be
eliminated during the test phase.

Description of the Adapters (PODs) C-9

C.1.4 ROM Versions with Piggy-Back-CPUs

The emulation of ROM versions is done by means of a so called piggy-back-
CPU. This is a special processor variant, which has a socket for the reception
of an EPROM on the upper side of its case. The piggy-back-CPU behaves
together with this EPROM exactly like a CPU with internal ROM.

The Universal adapter of the BICEPS emulator is plugged into the EPROM
socket on the upper side of the piggy-back-CPU. In this way the following
CPUs can be emulated:
 80C51/52, 87C51/52, 89C51/52, 80C154, 87C154
Supported are up to 32 kByte internal ROM/EPROM.

For jumper settings please notice the following:
 Jumper A: to the outside (to the pcb edge)
 Jumper D1: to the inner side (to the cable)
 Jumper D2: to the outside (to the pcb edge)
 Jumper field E: E1 eliminated, E2 und E3 placed
The clips cable ALE und RESET have furthermore to be connected to the
CPU (compare also chapter C.1)

In order that the piggy-back-CPU can operate, the same provisions must be
fullfilled as with the original ROM version, i.e.
! the CPU must be supplied with 5V
! a clock must exist (external clock or quartz at pin 18 and 19 of the

CPU)
! the pin /EA, which defines the operation as ROM version, must lie on

HIGH potential

Description of the Adapters (PODs) C-10

C.2 BICEPS processor adapters (PODs)

The processor adapters of the BICEPS emulator is constructed out of three
parts to enable simple adaption to controller type, operation mode and
package. Important is the difference between port mode and bus mode
emulation. The POD parts are plugged together vertically:

The upper part (adapter part A) defines the operation mode of ports 0 and 2.
If this ports are operating in bus mode, e.g. if the application uses an external
program or data memory, standard bus drivers can be used on the POD (A1).
If Port0 and Port2 are used as I/O pins, the controller must be switched in the
so called "Hook" mode. In the hook mode, bus and port informations are
multiplexed; so the port contents can be recreated by a special circuit from
the Port0- and Port2 signals (A2).

The middle part (adapter part B) consists of the microcontroller, jumpers for
setting th eoperating mode and connectors to parts A and C. If the controller
is a bondout version, part A1 must be used as upper part, because multiplex
between I/O and bus informations is necessary.

The lower part (adapter part C) adapts the POD to the package type of the
emulated controller, e.g. DIL, PLCC or QFP.

All jumpers which can be set by the user, are located on the CPU adapter
(POD), so the emulator's case need not be opened. The place of the jumpers
and their specialities are described in the following subchapters. Information
about the Universal adapter you find in appendix C.1.

Description of the Adapters (PODs) C-11

C.2.1 Adapter part A1

Standard part for all applications with Port0 and Port2 in bus mode. All
circuits have sockets and can be exchanged by the user in the case of a defect.
This adapter part is used with bondout versions, too.

C.2.2 Adapter part A2

POD for applications with Port0 and/or Port2 in port mode. The controller is
switched in the "Hook" mode by the emulator. The I/O-signals of Port0 and
Port2 are generated by a circuit that has the same quasi-bidirectional Port
structure as an 80C51 controller. Pullup resistors, an additional pullup driver
for low/high transitions (Port2) and tri-state-drivers if used as external bus
(Port0) are provided.

Two operating modes are possible (menu "Options"):
 Port0 and Port2 are operating as ports
 Port0 is operating as 8 bit bus, Port 2 as I/O-port

C.2.3 Adapter parts B...

The adapter part B contains the microcontroller and jumpers to define the
operating mode

CPU clock (Jumper A):
Selection between emulator clock (Oscillator of adpter part A) and external
clock. This selection is possible only by jumper and not by software. If
bondout- or hook-mode-versions are used, the internal clock must be used.

Description of the Adapters (PODs) C-12

RD- and WR-signals (Jumper B):
For the ports P3.7 and P3.6 of the CPU it must be definedc, wether they are
working as I/O-pins or as RD- and WR-signals. In the first case the port pins
are connected directly with the board under test without any connection to the
emulator logic.

Power supply of the adapter (Jumper C):
The external adapter with the emulation CPU (POD) can receive its power
supply by the emulator as well as by the user's circuit. In a normal case the
former solution is chosen, since in the opposite case one always needs an
external power source for starting the emulator.

Reset signal high or low activ (Jumper D):
This jumper is only available, if controllers with different reset signals can be
plugged in the CPU socket.

Description of the Adapters (PODs) C-13

C.3 POD B32-44 for CPUs in a 40/44 pin package
 (80C31/32, 80C51/52, 80C320, 80C51FA ...)

D1 D2

B1 B2 B3 B4

C1C2C3 C4C5

A1 A2

1 2 31 2 3

1 2 3

CPU clock (Jumper A)
A1=2-3: Emulator clock (oscillator of partA, default)
A1=1-2, A2: external clock or crystal (XTAL pins are connected directly with the board)

RD- and WR signals (Jumper B)
B1, B2, B4: P3.7 = RD, P3.6 = WR (default)
B3: P3.7 = Port, P3.6 = Port

Power supply of the adapter (Jumper C)
C2, C3, C4: Standard-80C51, internal power supply (default)
C1, C3, C4: Standard-80C51, exteral power supply by the user board
C1, C2, C5: Philips 8x591, internal power supply
C1, C4, C5: Philips 8x591, external power supply by the user board

Reset logic (Jumper D)
D1=2-3, D2=2-3: Standard-80C51-RESET, high activ (default)
D1=1-2, D2=1-2: Inverted reset: /RESET, low activ (for example 8xC591)

Description of the Adapters (PODs) C-14

C.4 POD B552 for Philips 8xC552

JC

B1B2B3B4

A2 A1

1 2 3

1 2 3

intext

CPU clock (Jumper A)
A1=2-3: Emulator clock (oscillator of partA, default)
A1=1-2, A2: external clock or crystal (XTAL pins are connected directly with the board)

RD- and WR signals (Jumper B)
B1, B2, B4: P3.7 = RD, P3.6 = WR (default)
B3: P3.7 = Port, P3.6 = Port

Power supply of the adapter (Jumper C)
JC=2-3: internal power supply (default)
JC=1-2: exteral power supply by the user board

Description of the Adapters (PODs) C-15

C.5 POD B592 for Philips 8xC592

JC

B1B2B3B4

A2 A1

1 2 3

1 2 3

intext

CPU clock (Jumper A)
A1=2-3: Emulator clock (oscillator of partA, default)
A1=1-2, A2: external clock or crystal (XTAL pins are connected directly with the board)

RD- and WR signals (Jumper B)
B1, B2, B4: P3.7 = RD, P3.6 = WR (default)
B3: P3.7 = Port, P3.6 = Port

Power supply of the adapter (Jumper C)
JC=2-3: internal power supply (default)
JC=1-2: exteral power supply by the user board

Description of the Adapters (PODs) C-16

 C.6 POD B537 for Siemens/Infineon 80C517A/80C537
 (with converter also for 80C515A/80C535)

JC

B1B2B3B4

A2 A1

1 2 3

1 2 3

intext

CPU clock (Jumper A)
A1=2-3: Emulator clock (oscillator of partA, default)
A1=1-2, A2: external clock or crystal (XTAL pins are connected directly with the board)

RD- and WR signals (Jumper B)
B1, B2, B4: P3.7 = RD, P3.6 = WR (default)
B3: P3.7 = Port, P3.6 = Port

Power supply of the adapter (Jumper C)
JC=2-3: internal power supply (default)
JC=1-2: exteral power supply by the user board

Description of the Adapters (PODs) C-17

 C.7 POD B520 for Dallas 87C520/530

JC

1 2 3

intext

Power supply of the adapter (Jumper C)
JC=2-3: internal power supply (default)
JC=1-2: exteral power supply by the user board

Description of the Adapters (PODs) C-18

C.8 POD B89C51CC for Temic89C51CC

A2 A1

B1 B2 B3 B4int JC ext

1 2 3

1 2 3

CPU clock (Jumper A)
A1=2-3: Emulator clock (oscillator of partA, default)
A1=1-2, A2: external clock or crystal (XTAL pins are connected directly with the board)

RD- and WR signals (Jumper B)
B1, B2, B4: P3.7 = RD, P3.6 = WR (default)
B3: P3.7 = Port, P3.6 = Port

Power supply of the adapter (Jumper C)
JC=1-2: internal power supply (default)
JC=2-3: exteral power supply by the user board

Solving Problems D-1

D Solving problems

When the emulator is started or during operation several error messages can
be displayed.

„Emulator not ready“
Check, wether the power supply is switch on and wether the serial or parallel
interface is set correctly. More information to the interfaces you find in
appendix B.

„Processor is not responding“
The emulation CPU doesn’t answer after a hardware reset. Reasons may be:
If you use a processor adaptor (POD):
$ The adaptor isn’t connected correct to the emulator
$ There is no CPU on the adaptor
$ The power supply is jumpered external (jumper D), but the external

power is not connected
If you use an Universal adapter:
$ Thea /PSEN signal is not connected correctly (jumper D1)
$ The logic of the reset signal is jumpered wrong (jumper D2)
$ The reset signal is not connected correctly (see appendix C)
$ The power supply of the test board is switched off.
$ The necessary conditions for the operation of the piggy-back-CPU are

not fulfilled (compare appendix C.2)

